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We analyze Bader’s variational procedure (BVP) to define Proper Quantum Topo-
logical Subspaces (PQTS) in multiatomic systems (MAS). In particular, we explicitly
treat the problem of the initial condition of the partial differential equation resulting
from BVP and defining the boundary of PQTS. We show that in general for MAS where
nuclei correspond to spherical regions of constant (uniform) distribution the proper ini-
tial condition associated with the equation defining single atoms automatically emerges
from the fundamental physical and mathematical hypothesis on which BVP is based.
Our results justify the uniqueness of Bader’s partition of atoms in molecules on the
basis of an a priori mathematical argument implicitly contained in the theory rather
than on an a posteriori chemical one as done so far.

KEY WORDS: Quantum Topological Subspaces, interatomic surface, partial differen-
tial equation, proper initial condition

AMS classification: 82-XX, 49Q99, 35Q40

1. Introduction

By combining Dirac’s transformation theory and the action principle,
J. Schwinger developed a self-contained formulation of quantum mechanics
which does not require the conventional correspondence principle and the
related assumptions [1]. Within such a theoretical framework, Bader and cowork-
ers derived via a variational approach the definition of PQTS. This definition
leads to quantum subsystems in real space for each of which equations of
motion and commutation relations are the same as for the whole system [2–5].
In simple words (and in the most known application) this is Bader’s theory of
“Atoms in Molecules” [5]. Although this theory is well established in chemistry,
did not produce much interest in the theoretical physics community, this prob-
ably because the trend in modern quantum theory is to never consider atoms
and molecules as objects strictly bounded in space by some surface. We find
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this point of view understandable, but not sufficient to justify the lack of inter-
est towards a theoretical apparatus which is elegant and somehow rigorous. A
detailed analysis of Bader’s procedure can clearly lead to a deeper understanding
of the quantum theory and how it applies to real systems, moreover the theory is
supported by evident experimental results. For this reason we turned our atten-
tion to this subject, this work is part of a series of papers which try to analyze
the theory from different points of view beyond chemistry. For the matter strictly
connected with the current work, some points of the theory are not clearly stated
in mathematical terms. Actually the very central point of the theory shows an
evident incompleteness from a mathematical point of view; here we analyze this
point in order to indicate a way for a more consistent formulation of the theory.

2. Bader’s variational condition

We do not analyze the whole procedure followed by Bader but focus the
attention on the final and crucial part of it, i.e. the variational problem whose
solution leads to a differential equation defining the bounding surface S(r) of the
PQTS �(r). �(r) is a subspace in real space thus S(r) must be a closed surface,
or, as for the case of a diatomic molecule, together with the bounding surface
at infinity should define a subspace of the whole space. The problem is defined
in the following terms. In order to obtain for a subsystem �(r), via Schwinger’s
principle of stationary action, commutation relations and equations of motion
which are the same as for the whole system, Bader shows [4] that is equivalent
to require that the variation in the subsystem �(r) of the Laplacian of the elec-
tron density ρ(r) vanishes:

δ

[∫
�

∇2ρ(r) dr
]

= 0. (1)

For this problem S(r) is considered dependent on ρ(r), i.e. for a variation δρ(r)
a variation δS(r) is produced. Next he states and proves [2] that a necessary and
sufficient condition to solve equation (1) is

∇ρ(r) · n(r) = 0; ∀r ∈ S(r), (2)

where n(r) is the unit vector normal to S(r). This is the condition used to define
atoms in multiatomic systems. Carefully reading equation (2) one can easily see
that represents an incomplete statement. In fact this is a partial differential equa-
tion of explicit form [6–8]:

∂ρ(r)
∂x

∂S(r)
∂x

+ ∂ρ(r)
∂y

∂S(r)
∂y

+ ∂ρ(r)
∂z

∂S(r)
∂z

= 0 (3)
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which can be solved if and only if an initial condition or a class of initial con-
ditions are specified; this is not the case of the current formulation of the the-
ory. This is the crucial point of this contribution; in a self-contained theory, as
Bader theory is supposed to be, where atoms are rigorously and uniquely topo-
logically defined, informations about the initial condition of equation (2) should
automatically emerge from the procedure adopted. In practical applications in
chemistry and chemical physics this problem is solved by saying that the separa-
trix surface (SEP) of ∇ρ(r), i.e. the surface along which gradients paths, related
to different nuclear sites, proceed parallel to each other, is the one to search for
because leads to single topological entities which recover the chemical charac-
teristics of atoms and molecules (see for example [12]). Using this chemically a
posteriori motivated argument solutions of the equation built with trajectories
of ∇ρ(r) generating (or terminating) at a nuclear site (along these trajectories
equation (2) is always satisfied; we will refer to these kind of solutions as TGN)
are excluded although in principle this does not emerge from any mathematical
statement. This fact has been already pointed out in the literature [13] and in a
previous work we gave a qualitative explanation [14]. It is important to point out
that although the statement that the boundary between the atoms in a molecule
does not pass through the nuclei seems rather obvious to a physicist, within a
self consistent theory which does not consider a priori the separation in atoms
of the whole quantum system, this separation should automatically emerge as a
result of the basic physical principles and the mathematical procedure adopted;
only in this case we can refer to the quantum subsystems as proper subsystems
without any chemical or physical artifact which may give an empirical charac-
ter to the procedure. We believe that this point is not a mere formal question
but involves the very basis of the theory; a first principles theory cannot make
ad hoc use of empirical considerations thus an analysis of how a class of initial
conditions can automatically emerge from the theory itself would represent sub-
stantial contribution. As we have shown in some recent work [9–11], SEP shows
interesting physical properties which could lead to a statistical interpretation of
chemical properties, of course a mathematical analysis which shows the unique-
ness of such a surface as an atomic interface will increase the validity of such
conclusions.

3. Initial conditions consistent with the hypothesis of the variational problem

In a MAS the total distribution of matter can be written as

ρtot(r) = ρe(r) + ρn(r), (4)

where ρe(r) is the electron distribution and ρn(r) is the distribution of parti-
cles forming nuclei. Let us restrict to the case usually considered in practical
applications, i.e. nucleus considered as a spherical region of constant (uniform)
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distribution of particles and ρtot(r) continuous and differentiable at every point.
Of course this implies that the differentiable condition holds at the juncture
between the electron and nuclear density as well; this is the basic principle which
allows, in electronic calculations, the use of a pseudopotential for the nucleus
and the non valence electrons. It follows that equation (4) on the whole domain
�(r) can be rewritten as

ρtot(r) = ρr∈�a(r) + ρr∈�b(r), (5)

where �b is the spherical region of the nucleus and �a = � − �b, while
ρn(r) = const; ∀r ∈ �b and zero elsewhere; consequently ρe(r) = 0; ∀r ∈ �b. At
this point we can transform equation(1) into

δ

[∫
�

∇2ρ(r) dr
]

= δ

[∫
�a

∇2ρ(r) dr +
∫

�b

∇2ρ(r) dr
]

. (6)

Clearly
∫
�b

∇2ρ(r)dr = 0; ∀r ∈ �b by definition and considering that �b is fixed,
the variational problem is reduced to

δ

[∫
�

∇2ρ(r) dr
]

= δ

[∫
�a

∇2ρ(r) dr
]

. (7)

The variation can be performed separately, first on a class of �s which
entirely contain the spherical nucleus (see figure 1), and then on �s where the
nucleus is on the border (see figures 2 and 3). In case � entirely contains �b

(which may be interpreted as the fact that the spherical nucleus is a solution of
the variational problem as well being a particular subsystem (nuclear) (see figure
1)) the SEP of the field ∇ρ(r) is the only solution of equation (2). This because
equation (2) expresses the condition that the surface S must be parallel to ∇ρ(r)
at every point; such a condition is satisfied by two kind of solutions: (1) the
SEP of the field ∇ρ(r). (2) Surfaces built with trajectories of ∇ρ(r) originating
from (terminating at) the nucleus (TGN): this type of solutions imply that the
nucleus is on the surface bounding �, as it is possible to see in figures 2 and

Ω
Ωb

Ωa

Figure 1. The plot shows the domain � over which the variation is performed. This corresponds to
the case when the bounding surface of � does not pass through the nuclear region �b.
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Figure 2. The plot shows the domain � over which the variation is performed. This corresponds to
the case when the bounding surface of � passes through the nuclear region �b and �b belongs to �.

Ω

Figure 3. The plot shows the domain � over which the variation is performed. This corresponds to
the case when the bounding surface of � passes through the nuclear region �b and �b does not

belong to �.

3, and so far we are restricting the variation over �s which entirely contain the
spherical nucleus, thus TGN are not in the class of surfaces we are considering
in this case. Now, as a second case, we are going to consider the �s where the
nucleus is on the border. From simple geometrical considerations from figures
2–4, one can argue that, if a solution exists for the case where the nuclear sur-
face (or part of it) belongs to the global surfaces solution, this will be a TGN
surface-like. At the same time a solution valid on the whole domain � should
satisfy equation (2) at every point; we state that under the hypothesis we have
done, this is not possible. In fact, as the only solutions of equation (2) are SEP
and TGN, the latter inevitably presents cusps around the region of the spherical
surface of the nucleus which is part of the solution because by definition around
the nucleus ρ(r) decreases along the radial direction so that ∇ρ(r) is perpendic-
ular to the nuclear surface at every point (see figure 4). In conclusion this class
of solutions is not acceptable on the basis of the fundamental mathematical and
physical hypothesis of the problem and as a consequence, combining this results
with those of Ref. [8], one can state that the separatrix surface is the only and
unique surface solution of Bader’s theory according to the fundamental mathe-
matical and physical hypothesis on which the theory is based. For “fundamental
mathematical and physical hypothesis of the problem” we mean that the surface
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Figure 4. The plot shows gradient paths (bold lines) in the immediate neighboring of the nuclear
spherical region. Dashed circles represent isodensity curves of decreasing value of ρ(r) as one pro-
ceeds outward along the radial direction. This is a two-dimensional simplification, the extension to

the three-dimensional case is trivial.

must be closed (in some cases together with the bounding surface at infinity) and
must not present singularity at any point, i.e. each point belonging to � must
be uniquely assigned to a subspace. The case of point-like nuclei representing
cusps of ρ(r) (as studied in [12]) can be studied by simply doing the limit to
zero of �b, and noticing that this does not eliminate the discontinuity at the sur-
face, while the other considerations we have done for the spherical region remain
the same. The case we have considered applies to many real cases; as previously
argued, the most common example is the ab initio pseudopotential approaches,
where the nucleus is considered as a uniform spherical entity, so that the topol-
ogy of the whole system corresponds to the one we have treated.

4. Conclusion

The equation for defining atoms in MAS, as stated in Bader’s procedure is
formally incomplete, since is not related to an initial condition. Although this
fact does not have consequences on practical applications of Bader’s theory, we
believe is an important point for showing the validity of the theory as a self-con-
sistent first principles approach. We analyzed the procedure which leads to the
central equation and from the fundamental mathematical and physical hypoth-
esis of the problem derived properties which necessarily characterize a class of
initial conditions for the equation. We have shown that the SEP of ∇ρ(r) is con-
sistent with the mathematical and physical requirements of the problem and as
a consequence a class of initial conditions is defined. In spite of the unjustified



L. Delle Site / Proper Quantum Topological Subspaces 295

lack of interest of most of the physical community, the physics behind this equa-
tion is very rich and need to be developed in several directions beyond chemistry,
our pioneering statistical [9–11] and mathematical [8] analysis is an example.
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